
© Copyright Ian D. Romanick 2008

12-February-2008

VGP352 – Week 6

⇨ Agenda:
 Fur rendering 3 ways

 Goldman's “fake fur”
 “Shells and fins” fur
 Banks BRDF on large hairs

© Copyright Ian D. Romanick 2008

12-February-2008

fakefur

⇨ Developed by Dan Goldman at ILM
 A much faster version of the “realfur” algorithm used

at ILM for close-up shots

© Copyright Ian D. Romanick 2008

12-February-2008

fakefur

⇨ Developed by Dan Goldman at ILM
 A much faster version of the “realfur” algorithm used

at ILM for close-up shots

⇨ Makes several simplifying assumptions:
 Geometry of individual hairs is not visible
 Hairs are truncated cones
 The length of each cone is much greater than the

radius of either end
 Can't be used to render 5 o'clock shadow!

 Radius of the base is greater than the radius of the
other end

 All hairs in an area have identical geometry

© Copyright Ian D. Romanick 2008

12-February-2008

Algorithm Overview

⇨ Compute average hair geometry in sample area
⇨ For each light:

 Compute hair-over-hair shadow attenuation
 Compute reflected luminance of hair
 Compute hair-over-skin shadow attenuation
 Compute reflected luminance of skin
 Compute hair / skin visibility ratio
 Blend skin and hair reflected luminances using hair /

skin visibility ratio

⇨ Sum per-light calculated values

© Copyright Ian D. Romanick 2008

12-February-2008

Illumination Function

⇨ Why is sin used instead of the usual cos?

diffuse=Kd sin T , L

specular=K s T⋅LT⋅Esin T , Lsin T , E
p

hair=diffusespecular

© Copyright Ian D. Romanick 2008

12-February-2008

Illumination Function

⇨ Why is sin used instead of the usual cos?
 A hair is an infinitesimal cylinder and has infinite

normals
 The tangent pointing along the length of the hair is

used instead
 N and T are 90˚ out of phase, so cos(N, L) = sin(T, L)

diffuse=Kd sin T , L

specular=K s T⋅LT⋅Esin T , Lsin T , E
p

hair=diffusespecular

© Copyright Ian D. Romanick 2008

12-February-2008

Illumination Function

⇨ Why is sin used instead of the usual cos?
 A hair is an infinitesimal cylinder and has infinite

normals
 The tangent pointing along the length of the hair is

used instead
 N and T are 90˚ out of phase, so cos(N, L) = sin(T, L)

⇨ How can we calculate sin(T, L)?

diffuse=Kd sin T , L

specular=K s T⋅LT⋅Esin T , Lsin T , E
p

hair=diffusespecular

© Copyright Ian D. Romanick 2008

12-February-2008

Illumination Function

⇨ Why is sin used instead of the usual cos?
 A hair is an infinitesimal cylinder and has infinite

normals
 The tangent pointing along the length of the hair is

used instead
 N and T are 90˚ out of phase, so cos(N, L) = sin(T, L)

⇨ How can we calculate sin(T, L)?

diffuse=Kd sin T , L

specular=K s T⋅LT⋅Esin T , Lsin T , E
p

hair=diffusespecular

a×b
∣a∣∣b∣

=sin n∣a×b
∣a∣∣b∣∣=sin

© Copyright Ian D. Romanick 2008

12-February-2008

Illumination Function

⇨ What's the problem here?

diffuse=Kd sin T , L

specular=K s T⋅LT⋅Esin T , Lsin T , E
p

hair=diffusespecular

© Copyright Ian D. Romanick 2008

12-February-2008

Illumination Function

⇨ What's the problem here?
 Lacks directionality – hairs are fully lit even if L is

opposite E
 Fix this by adding some new attenuation factors

diffuse=Kd sin T , L

specular=K s T⋅LT⋅Esin T , Lsin T , E
p

hair=diffusespecular

© Copyright Ian D. Romanick 2008

12-February-2008

Relative Directionality

 > 0 when L and E are on the same side of the hair
(frontlighting)

 < 0 when L and E are on opposite sides of the hair
(backlighting)

=
T×LT×E

∣T×L∣∣T×E∣

© Copyright Ian D. Romanick 2008

12-February-2008

Directional Attenuation Factor

reflect

 and
transmit

 are parameters of the hair on the

range [0, 1]
 White and gray hairs have

reflect
 and

transmit
 equal or

nearly equal
 Colored hairs have

reflect
 >

transmit

f dir=
1

2
reflect

1−

2
transmit

© Copyright Ian D. Romanick 2008

12-February-2008

Directional Attenuation Factor

reflect

 and
transmit

 are parameters of the hair on the

range [0, 1]
 White and gray hairs have

reflect
 and

transmit
 equal or

nearly equal
 Colored hairs have

reflect
 >

transmit

 Unless you're a kitten...

f dir=
1

2
reflect

1−

2
transmit

© Copyright Ian D. Romanick 2008

12-February-2008

Self-Shadowing

⇨ Controlled by a second attenuation factor and 3
new parameters:

surface

 controls the amount of self-shadowing

min

 is the minimum angle where shadowing occurs

max

 is the angle beyond which there is total occlusion

f surface=1surface smoothstep N⋅L,min ,max−1

© Copyright Ian D. Romanick 2008

12-February-2008

Fur Opacity

⇨ How much of the surface below the fur can be
seen through the fur

 D is the local hair density
 A

h
 is the projection of the surface area of a hair onto

the view plane

f=1−
1

eD A h gE ,T , N

gE ,T , N =
sinE ,T

E⋅N
Ah=lhair rbaser top/2

© Copyright Ian D. Romanick 2008

12-February-2008

Putting it all together

⇨ Put the attenuation factors together with the
opacity and skin color:

skin

 is calculated by some other means

hair=f dir f surfacediffusespecular

skin=K light 1−f skin

hair=K light 1−
f

2
hair

f=f hair1−f skin

© Copyright Ian D. Romanick 2008

12-February-2008

Break

© Copyright Ian D. Romanick 2008

12-February-2008

Volumetric Fur

⇨ Close-up, fur appears as a volumetric effect
⇨ Kajika and Kay presented an algorithm at

SIGGRAPH '89 implementing fur via 3D textures
 Volumetric textures are very memory intensive
 Kajika and Kay's model involves several

computationally expensive steps

⇨ Not practical for real-time
 There has to be a different way!

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ Instead of a 3D texture, fur can be implemented
with a “stack” of 2D textures

 Each layer in the stack represents the fur at a different
depth

 Draw each layer in a progressively larger “shell”
around the original object geometry

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ Drawing loop:
 Draw base object with inner-most (call it level 0) fur

texture
 Disable alpha blending
 Enable z-testing
 Enable z-writing

 Draw base geometry moved out some small step
along the normals

 Enable alpha blending
 Enable z-testing
 Disable z-writing

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ But this looks bad along the silhouette

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ Add fin geometry to each polygon
 Create fin textures to look like side-on view of fur
 Draw fin after drawing all shells

 Enable alpha blending
 Enable z-testing
 Disable z-writing

⇨ Generate fin geometry in the vertex shader:
 Draw each vertex twice

 Once with w = 0
 Once with w = 1

 Use the w value to determine whether or not to
extrude the vertex in the normal direction

 Draw the vertices as a quad in the order 0, 1, 1, 0

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ But this looks bad in non-silhouette areas

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ Gradually blend in fins as they approach the
silhouette

⇨ We don't really have a fin normal...what to do?

fin=max 0,2∣cosV , N fin∣−1

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ Gradually blend in fins as they approach the
silhouette

⇨ We don't really have a fin normal...what to do?
 The surface's normal is the fin's tangent

fin=max 0,2∣cosV , N fin∣−1

fin=max 0,2∣sin V , N surface∣−1

© Copyright Ian D. Romanick 2008

12-February-2008

Shells and Fins

⇨ Alpha blended fins

© Copyright Ian D. Romanick 2008

12-February-2008

Lighting Shells and Fins

⇨ Use the surface normal as the direction of the
hair

 P
d
 and P

s
 are diffuse and specular exponents

 Similar to Goldman's fakefur lighting model

⇨ A little trig-identity love gets us:

K=K d sin N surface , LPdK s sin N surface , H
Ps

K=K d 1−cos N surface , LPd /2K s1−cosN surface , H
Ps/2

K=K d 1−N surface⋅LPd /2K s1−N surface⋅H
Ps/2

© Copyright Ian D. Romanick 2008

12-February-2008

Lighting Shells and Fins

⇨ No shadowing happens!
 Fur near the skin is occluded by the fur above it
 Add a shadowing term to falloff to a minimum value

linearly with the distance from the outermost shell

 D is the current shell distance
 D = 0 is the shell closest to the skin

 D
max

 is the total number of shells

 S
min

 is the minimum amount of light reaching the bottom layer

S=
D 1−Smin

Dmax

Smin

© Copyright Ian D. Romanick 2008

12-February-2008

References

Sheppard, G. Real-Time Rendering of Fur. Honors Thesis, Univ. of Sheffield.
2004.
http://www.gamasutra.com/education/theses/20051028/sheppard_01.shtml

Thorough overview of the various real-time fur methods.

Tariq, S. Fur (using Shells and Fins). Nvidia White Paper, Number
WP-03021-001_v01. February 2007.
http://developer.download.nvidia.com/whitepapers/2007/SDK10/FurShellsAndFins.pdf

This article focuses on optimizing shells-and-fins using Shader Model 4
features that are currently only supported in OpenGL on GeForce8.

Kajiya, J. T. and Kay, T. L. 1989. Rendering fur with three dimensional textures.
SIGGRAPH Comput. Graph. 23, 3 (Jul. 1989), 271-280.
http://www.icg.tu-graz.ac.at/courses/lv710.087/kajiyahair.pdf

Lake, A. and Kuah, K.. Real-Time Fur Rendering For Short Haired Creatures.
2006. http://softwarecommunity.intel.com/articles/eng/2597.htm

Morris, N. CS6610 Final Project. December 2005.
http://www.cs.utah.edu/classes/cs5610/projects-2005/morris/

http://www.gamasutra.com/education/theses/20051028/sheppard_01.shtml
http://developer.download.nvidia.com/whitepapers/2007/SDK10/FurShellsAndFins.pdf
http://www.icg.tu-graz.ac.at/courses/lv710.087/kajiyahair.pdf
http://softwarecommunity.intel.com/articles/eng/2597.htm
http://www.cs.utah.edu/classes/cs5610/projects-2005/morris/

© Copyright Ian D. Romanick 2008

12-February-2008

Break

© Copyright Ian D. Romanick 2008

12-February-2008

Terminology – codimension

⇨ Given an object of dimension n in a k
dimensional space with k > n, the codimension,
c, is equal to n-k

 For a surface in 3-space, n is 2 and k is 3
 When c = 1, we can trivially assign a normal to the object

© Copyright Ian D. Romanick 2008

12-February-2008

Terminology – codimension

⇨ Given an object of dimension n in a k
dimensional space with k > n, the codimension,
c, is equal to n-k

 For a surface in 3-space, n is 2 and k is 3
 When c = 1, we can trivially assign a normal to the object

 For a line in 3-space, n = 1, k = 3, and c = 2

© Copyright Ian D. Romanick 2008

12-February-2008

Terminology – vector spaces

⇨ T is the tangent-space at some point on the
object

 Vector space tangent to the point on the object
 Has dimension k (same as the object)

⇨ N is the normal-space at some point on the
object

 Vector space orthogonal to T
 Has dimension c (codimension of the object)

© Copyright Ian D. Romanick 2008

12-February-2008

Terminology – vectors

⇨ X
N
 is the projection of vector X onto N

⇨ X
T
 is the projection of vector X onto T

© Copyright Ian D. Romanick 2008

12-February-2008

Diffuse Reflection

⇨ Applying this terminology, diffuse reflection is
calculated as:

I diffuse=K d cosL, LN

© Copyright Ian D. Romanick 2008

12-February-2008

Diffuse Reflection

⇨ Applying this terminology, diffuse reflection is
calculated as:

⇨ Since N and T are orthogonal, we can rewrite
this as:

I diffuse=K d cosL, LN

I diffuse=K d sin L, LT

© Copyright Ian D. Romanick 2008

12-February-2008

Specular Reflection

⇨ Specular reflection is generally calculated as:

⇨ If c > 1, there are infinite N vectors, so there are
infinite possible R vectors

R=N−2N⋅LL
I specular=k s I light cosV , R

© Copyright Ian D. Romanick 2008

12-February-2008

Fermat's Principle Saves the Day

⇨ Fermat's principle says that light travels on the
shortest length path

 This means that L, L
N
, and R are coplanar

 Skipping the derivation, this means that R
N

= L
N

 Skipping more derivation, we can calculate cos(V, R)
as:

V⋅R=V T⋅LT−∣V N∣∣LN∣

© Copyright Ian D. Romanick 2008

12-February-2008

Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
 One side of the surface “self-shadows” the other, and

we get that calculation for free from N•L

© Copyright Ian D. Romanick 2008

12-February-2008

Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
 One side of the surface “self-shadows” the other, and

we get that calculation for free from N•L

⇨ Consider a surface with a 2D tangent space, T,
and a 1D vector field, V

 If T is used to calculate the illumination, N•L works
 If V is used to calculate the illumination, there is no

unique N to use

© Copyright Ian D. Romanick 2008

12-February-2008

Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
 One side of the surface “self-shadows” the other, and

we get that calculation for free from N•L

⇨ Consider a surface with a 2D tangent space, T,
and a 1D vector field, V

 If T is used to calculate the illumination, N•L works
 If V is used to calculate the illumination, there is no

unique N to use
 If V is used to calculate the illumination, it can inherit

N•L from T
I conditioned=max N⋅L,0I diffuseI specular

© Copyright Ian D. Romanick 2008

12-February-2008

Vector Field Shadowing

⇨ This shadows the vector field from the surface
⇨ If the vectors like outside the surface (e.g., fur)

the vector field can obviously shadow itself and
the surface

⇨ Input light energy is attenuated by:

 h is the distance from the surface
 is a property of the fur

 The paper uses = 0.02

d=h /sin T , L
I atten=I source 1−

d

© Copyright Ian D. Romanick 2008

12-February-2008

References

Banks, D. C. 1994. Illumination in diverse codimensions. In Proceedings of the
21st Annual Conference on Computer Graphics and interactive Techniques
SIGGRAPH '94. ACM, New York, NY, 327-334.
http://lmi.bwh.harvard.edu/~banks/

http://lmi.bwh.harvard.edu/~banks/

© Copyright Ian D. Romanick 2008

12-February-2008

Next week...

⇨ Non-photorealistic rendering
 Cel shading (cartoon rendering)
 Silhouette edge rendering
 Gooch style technical illustrations

© Copyright Ian D. Romanick 2008

12-February-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

